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The Argo Program has been implemented and sustained for almost two decades, as

a global array of about 4000 profiling floats. Argo provides continuous observations of

ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The

successful installation of the Argo array and its innovative data management system

arose opportunistically from the combination of great scientific need and technological

innovation. Through the data system, Argo provides fundamental physical observations

with broad societally-valuable applications, built on the cost-efficient and robust

technologies of autonomous profiling floats. Following recent advances in platform

and sensor technologies, even greater opportunity exists now than 20 years ago to (i)

improve Argo’s global coverage and value beyond the original design, (ii) extend Argo to

span the full ocean depth, (iii) add biogeochemical sensors for improved understanding

of oceanic cycles of carbon, nutrients, and ecosystems, and (iv) consider experimental

sensors that might be included in the future, for example to document the spatial and

temporal patterns of ocean mixing. For Core Argo and each of these enhancements,

the past, present, and future progression along a path from experimental deployments

to regional pilot arrays to global implementation is described. The objective is to

create a fully global, top-to-bottom, dynamically complete, and multidisciplinary Argo

Program that will integrate seamlessly with satellite and with other in situ elements of

the Global Ocean Observing System (Legler et al., 2015). The integrated system will

deliver operational reanalysis and forecasting capability, and assessment of the state

and variability of the climate system with respect to physical, biogeochemical, and

ecosystems parameters. It will enable basic research of unprecedented breadth and

magnitude, and a wealth of ocean-education and outreach opportunities.

Keywords: Argo, floats, global, ocean, warming, circulation, temperature, salinity

INTRODUCTION

The Argo Program is a major component of both the Global
Ocean Observing System (GOOS) and the Global Climate
Observing System (GCOS), providing near-real time data for
ocean and atmospheric services and high quality data for climate
research. The Argo Program began its implementation in 1999
and has provided global coverage of the upper 2000 m of
the oceans since 2006. By November 2018, Argo had provided
2,000,000 profiles since the program began, and a comparable
number of velocity drift estimates at 1000 m depth. Although
originally designed to provide temperature and salinity profiles
in the upper 2 km of the ice-free oceans, the array has been
expanded into seasonal ice zones using floats equipped with ice
avoidance algorithms. Argo profiling floats also are sampling
in many marginal seas. In addition, ongoing regional pilot
programs have demonstrated that Argo floats can now (1)
measure biogeochemical parameters to address oceanic uptake
of carbon, acidification and deoxygenation (Biogeochemical,
BGC, Argo) and (2) make measurements throughout the water
column to 6000 m depth (Deep Argo). Notification through the

Argo Information Center (AIC), following Intergovernmental
Oceanographic Commission (IOC) guidelines to protect the
rights of Coastal States, has enabled global coverage. Presently
the number of functioning Argo floats remains steady, with total
float count around 4000. This has been possible, despite relatively
flat funding, through a collaboration of international partners
and significant technological innovation. The Argo Data System
provides real-time data within 24 h of collection through the
Global Telecommunications System (GTS) and via the internet
for use at global prediction centers. The Argo Data Management
Team (ADMT) also oversees delayed-mode quality control of the
data and the availability of Argo data at the Argo Global Data
Assembly Centers.

To meet future needs, Argo should (1) support continuing
innovation in float technology, (2) enhance coverage in critical
regions such as the equatorial band, where higher temporal
resolution is needed and the western boundary regions where
mesoscale ‘noise’ is high, (3) implement Deep Argo and
Biogeochemical Argo in the global array, (4) assess the technical
readiness and scientific value of experimental measurements for
possible future inclusion in Argo, for example those used to
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estimate small scale mixing, and (5) collaborate with our end-
user community to improve the use of Argo data in prediction
systems and services. This review lays out the motivation,
development, and present status of the Argo Program, and
addresses the five issues mentioned above. It is important to note
that Core Argo has reached and maintained full implementation
through innovation and broad community support. Only a
small fraction of the funding needed to support the ambitious
community requests for an expanded Argo Program can be
identified at present. It is important for Argo to meet its
future challenges as a single integrated program. The present
elements of Argo – Core, Deep, and BGC – and of its data
management system are not separable, and any other future
enhancements will similarly be considered as contributions to
the unified effort.

MOTIVATION, DEVELOPMENT,
TECHNOLOGY

Core Argo
During the 1990s, the World Ocean Circulation Experiment
brought increased understanding of important oceanic roles
in climate variability and change (Siedler et al., 2001). The
need to observe the global subsurface ocean, together with
a fit-for-purpose revolutionary autonomous technology (Davis
et al., 2001), led to a multinational proposal for a global
subsurface ocean observing system (Argo Steering Team, 1998).
The proposed ‘Argo Program’ would be comprised of over 3000
profiling floats, obtaining a snapshot of the physical state of
the ocean from 0 to 2000 m every 10 days. All data would be
freely shared in near-real time (NRT, within 24 h) to support
forecasting, and with a highly quality-controlled delayed-mode
(DM) version delivered within 12 months for climate research
and assessments. Argo floats were deployed in regional arrays
beginning in 1999 and then globally from 2004 to the present.
Argo has fulfilled its promise to complement and integrate
across many satellite and in situ elements of the GOOS and
across many regional observational networks (deYoung et al.,
2019; Foltz et al., 2019; Hermes et al., 2019; Lee et al., 2019;
Newman et al., 2019; Palazov et al., 2019; Smith et al., 2019;
Todd et al., 2019).

A number of key elements that contributed to Argo’s
success over the past 20 years are evident. The underpinning
profiling float technology is simple, robust, and cost-effective.
A strong international consensus on the high value of Argo,
by agencies and the science community, contributed to Argo’s
rapid roll-out. Once Argo was in place, a broad base of
applications (see section “Core Argo” under the section “End
User Engagement”) including basic research, assessment of the
state of the Earth’s climate, tertiary and secondary education, and
ocean modeling for reanalysis and operational prediction, drew
strong community support. Effective partnerships developed
between Argo teams and commercial suppliers, to exploit and
improve float and sensor technologies. The IOC provided
necessary protocols to facilitate the operation of Argo floats in
national waters (Intergovernmental Oceanographic Commission

[IOC], 1999), while the AIC1 supplied the mechanisms for
tracking and reporting to coastal states (Pinardi et al., 2019).

Technology advances have continued throughout Argo’s 20-
year history. New generation profiling floats are smaller, lighter,
and more energy efficient. A profoundly important transition
from unidirectional to faster bidirectional communication
(Iridium) improves vertical resolution and shortens surface
times from 12 h to 20 min, greatly reducing bio-fouling, array
divergence due to surface drift, grounding, and other hazards.
Ice-avoidance measures in float controllers (Klatt et al., 2007)
have extended the range of Argo through the seasonal ice zones
(Wong and Riser, 2011). Improved CTD sensors, as well as
procedures for delayed-mode quality control (Owens and Wong,
2009) have increased the accuracy and consistency of the Argo
dataset. Float lifetimes have increased, to 4–5 years for most Argo
National Programs, reducing the cost per profile while extending
reseeding intervals. All of these improvements are propagated
across the Argo national programs through communication of
Best Practices (Pearlman et al., 2019).

Argo’s systematic and regular observation of the global
subsurface ocean has transformed ocean observing. Northern
hemisphere, near-coastal, and seasonal sampling biases of earlier
eras are removed. The global Argo array has been sustained
and improved for more than a decade, providing data for
over 3000 research publications and becoming a mainstay
of global ocean data assimilation, modeling, and prediction
applications. The notable convergence, in the Argo era, of
diverse estimates of historical global ocean heat content changes
(e.g., Johnson et al., 2016) has increased the confidence that
can be placed on the reliability of national and international
assessments of climate change. International partners in Argo
merge their efforts to produce a seamless global array,
providing standardized observations, and delivering near real-
time and research quality data with public access. Argo has
led the way among ocean observing networks with regard to
international cooperation, operations planning, Data Availability,
and metadata quality.

BGC-Argo
The Biogeochemical (BGC)-Argo program began with the
deployment of optical (Bishop et al., 2002; Mitchell, 2003; Boss
et al., 2008) and oxygen (Körtzinger et al., 2004; Riser and
Johnson, 2008) sensors on profiling floats between 2000 and 2003.
The success of these efforts was highlighted at the Autonomous
Platforms and Sensors meeting (Rudnick and Perry, 2003), which
was the founding meeting for this community. It was followed
by the development of a global vision for biogeochemical
data acquisition through the inclusion of oxygen sensors on
Argo platforms (Gruber et al., 2007), and the launch the
same year of a working group of the International Ocean-
Color Coordinating Group, “Bio-optical sensors on Argo floats”
(IOCCG, 2011). In the meantime, both the oxygen and optical
communities were promoting their vision for developing a global
network of profiling floats carrying oxygen and optical sensors
as part of the OceanObs09 conference (Claustre et al., 2010;

1http://argo.jcommops.org/
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Gruber et al., 2010), following a meeting in Johnson et al. (2009)
that addressed the development of a global observing system
using both gliders and profiling floats.

In 2016, ameeting was held in Villefranche-sur-mer to develop
an implementation plan for BGC-Argo. The subsequent report
(Biogeochemical-Argo Planning Group, 2016) was the starting
point of the BGC-Argo program. Observing system simulation
experiments (OSSEs) performed for this meeting suggested that
a 1000-float array would significantly constrain the processes
that control global oxygen and carbon distributions, including
air-sea fluxes and exports from the surface (Kamenkovich
et al., 2017). Assuming a mean BGC float lifetime of 4 years,
sustaining a 1000-float array requires 250 floats per year with
an estimated annual cost near US$25-M. Each of the floats
would carry sensors for six core ocean variables measured with
targeted accuracies2: chlorophyll fluorescence (Chla), particle
backscatter, oxygen, nitrate, pH, and irradiance. The 1000-float
array would provide observational data to transform ability to
quantify: (i) air-sea carbon fluxes, (ii) ocean deoxygenation,
oxygen minimum zones and related denitrification fluxes,
(iii) ocean acidification, (iv) the biological carbon pump, and
(v) phytoplankton communities. The observing system would
improve management of living marine resources and carbon
budget verification, both key societal goals. In 2017, a BGC-
Argo Scientific Steering Committee was formed (under the Argo
Steering Team), to guide the development of the network and
the implementation of the program objectives, and to continue
developing a vision for the future. In 2018, during the Executive
Council of IOC, unanimous support from Member States was
given to the proposal to incorporate the six biogeochemical
measurements in the Argo array. Additionally the Executive
Council approved a framework for the future addition of new
parameters to Argo.

The first BGC-Argo deployments consisted of a few floats at
a time. These have evolved to regional scale projects such as
remOcean (North Atlantic sub-polar Gyre, 20 floats) and NAOS
(Mediterranean Sea, 30 floats), and to basin-scale projects such as
SOCCOM (Southern Ocean Carbon and Climate Observations
and Modeling) with more than 100 floats deployed thus far,
toward a target of 200. These pilots have showcased the potential
of community-shared efforts to support better understanding of
major biogeochemical processes at the global scale and to explore
new research topics. The profiling float data sets have been vetted
by research groups via publications approaching several 100 in
total. BGC-Argo observations are open and free through the Argo
data system both in NRT and DM.

These projects are transforming our understanding of
variability in the ocean over time scales difficult to achieve
with ship-based observations. A few of these achievements
include characterization of ocean nitrate supply (Johnson
et al., 2010; D’Ortenzio et al., 2014); observation of bloom
dynamics beneath the surface (Boss and Behrenfeld, 2010;
Mignot et al., 2018); novel carbon export mechanisms through
a mixed-layer pump (Dall’Olmo and Mork, 2014; Dall’Olmo
et al., 2016) or eddy subduction (Llort et al., 2018); oxygen

2http://biogeochemical-argo.org/measured-variables-general-context.php

minimum zone processes (Whitmire et al., 2009; Prakash et al.,
2012; Stanev et al., 2018); ocean net community production
over complete annual cycles throughout the ocean (Riser and
Johnson, 2008; Bushinsky and Emerson, 2015; Hennon et al.,
2016; Plant et al., 2016); ocean ventilation (Körtzinger et al.,
2004; Wolf et al., 2018); air-sea exchanges of O2 (Bushinsky
et al., 2017) and CO2 (Williams et al., 2017; Bittig et al., 2018;
Gray et al., 2018); and mesoscale/sub-mesoscale processes
(Sukigara et al., 2011; Kouketsu et al., 2016). In a major advance,
the data are now being assimilated into biogeochemical models
to enable greater understanding and improved predictions
(Verdy and Mazloff, 2017).

The development of BGC-Argo floats has been based
on the standard Argo Pressure/Temperature/Salinity (P/T/S)
platforms, integrating new sensors when their readiness level
appeared compatible with long-term, operational use. Today,
the community is operating three main BGC-Argo platforms
(Figure 1): PROVOR, Navis, and APEX floats. While each of
these platforms is capable of carrying the six core sensors outlined
in the BGC-Argo implementation plan, due to present hardware
limitations and the objectives of funded research programs,
few have yet been deployed with all six. Deployments of floats
carrying the six core variables are highly desirable as well as
harmonizing of mission parameters with those of Core Argo.

Deep Argo
Deep Argo is motivated by the substantial oceanographic
variability found in the 50% of ocean volume that lies
below the 2000-dbar profiling target for conventional
Argo floats. Development of floats and CTDs capable of
accurate measurements to 6000 dbar makes global full-
depth Argo implementation feasible, including sampling of
bottom-intensified ocean variability.

Antarctic Bottom Water, which fills much of the ocean below
2000 dbar (Johnson, 2008), has been warming and freshening
during the past few decades, with these changes contributing
to steric sea level rise (Purkey and Johnson, 2013). The rate of
ocean heat-gain below 2000 dbar, of 0.065 ( ± 0.04) W m−2

from 1991 to 2010 (Desbruyères et al., 2016) is about 10% of
the 0.61 ( ± 0.09) W m−2 from 2005 to 2015 in the upper
1800 dbar (Johnson et al., 2016). Deep ocean (>2000 dbar)
heat content changes have been estimated over decadal intervals
using a sparse network of repeat hydrographic sections that are
sampled at quasi-decadal intervals (Talley et al., 2016), hence
only decadal estimates are possible, and uncertainties due to the
sparsity of observations are about 2/3 the size of the signal. In
contrast, Core Argo data enables decadal estimation of ocean
heat uptake shallower than 2000 dbar with uncertainties only
about 1/7 the size of the signal. In addition, monthly global
analyses of Core Argo data (Roemmich and Gilson, 20093) have
provided a basis for investigation of seasonal-to-interannual
variability (e.g., Johnson and Birnbaum, 2017). Deep Argo will
similarly reduce the uncertainties in decadal deep ocean heat
uptake estimates, while providing data for a broad range of
scientific investigations of deep variability (Johnson et al., 2015).

3http://sio-argo.ucsd.edu/RG_Climatology.html
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FIGURE 1 | The three main models of BGC-Argo floats presently in use include (A) Navis, (B) APEX, and (C) PROVOR.

The fact that abyssal trends and diffusivities both seem to be
insufficiently constrained in ocean state estimates is further
evidence that deep Argo is needed (Wunsch andHeimbach, 2014;
Forget et al., 2015).

North Atlantic Deep Water is also changing, with the
meridional overturning circulation decreasing measurably
between 2004–2008 and 2008–2012 (Smeed et al., 2018). Deep
ocean circulation variations have primarily been observed using
transoceanic moored arrays, which are costly to maintain, and
hence regionally limited (Lozier et al., 2017; Meinen et al., 2017;
Smeed et al., 2018). Repeat hydrographic section data are also
used for this purpose despite their sparse temporal sampling
(Bryden et al., 2005; Kouketsu et al., 2011). Deep Argo would
provide velocity and density information, complementing both
the moored arrays and repeat hydrography, as well as facilitating
decadal climate predictions and constraining full-depth ocean
data assimilation (Robson et al., 2012; Yeager et al., 2012;
Carrassi et al., 2016).

The value and technical feasibility of a Deep Argo Program
were recognized at OceanObs’09 (Roemmich et al., 2010).
Successful deployments of prototype deep floats and CTDs in

2012–2014 led to a Deep Argo ImplementationWorkshop inMay
2015 (Zilberman and Maze, 2015), where a plan for Deep Argo’s
progression to a global 5◦

× 5◦ array was endorsed. Regional pilot
arrays have been established in the South Pacific, South Indian,
and North Atlantic oceans, further demonstrating the feasibility
of a global Deep Argo array.

Argo Data Management
The Argo data system was designed in 2001 at the 1st Argo Data
Management meeting in Brest, France and its main components
remain in place and function well (Figure 2). The national Data
Assembly Centres (DACs) receive data via satellite transmission,
decode it, and apply quality control according to a set of
agreed NRT tests. Erroneous data are corrected if possible,
flagged accordingly and then sent to two Global Data Assembly
Centres (GDACs) and the GTS. The GDACs collect the data
from the 11 DACs, synchronize their databases daily and serve
the data on FTP sites. The AIC monitors the status of the
Argo Program, including data distribution, and meta data that
incorporate float location, model, transmission system, owner,
etc. In addition, the AIC gathers feedback on data quality from
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FIGURE 2 | Pathways of Argo near-real time and delayed-mode data and meta data are illustrated, originating from the Argo array and being distributed to users via

the GDACs. (Copyright: Euro-Argo ERIC, printed with permission).

users and relays it to float owners and DACs. Argo’s delayed-
mode data system for P/T/S variables relies on Argo data experts
examining the data and reflagging where necessary, using a
standard method (Owens and Wong, 2009) to estimate salinity
drift, in addition to applying salinity thermal lag adjustments and
pressure adjustments.

To improve the quality of P/T/S variables between NRT and
DM versions, a few tests have been developed to run on a regular
basis (e.g., monthly, quarterly, etc.) on the GDAC data holdings.
One of these is an objective analysis run monthly by Coriolis,
where profiles that are inconsistent with neighbors are identified
for further examination. Another is a quarterly comparison
with satellite altimetry performed by CLS/France. When suspect
profiles are identified, float owners andDACs are notified tomake
changes to data QC flags as needed.

The Argo Regional Centers (ARCs) perform a variety of tasks
including coordinating float deployments, consistency checks on
delayed mode quality control, finding additional reference data
for delayed mode work, adopting floats for delayed mode quality
control, and producing Argo data products.

While the complete data management chain (Figure 2) has
been developed for the core mission (P/T/S, 0–2000 dbar), the
extensions to Deep Argo and BGC Argo are under development
to form an integrated Argo Data Management System.

ArgoMix
Here a new enhancement is suggested for possible future
inclusion in Argo, consisting of direct shear and scalar
microstructure (turbulence) measurements for both the upper
and deep ocean. The rationale is provided by recent scientific
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